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I. The increase of complexity by self-association
increases the domain of stability of a biological system
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In this series of papers, a theory of functional organization is proposed for biological systems (formal
biological system, FBs), which is based on the concept of ‘functional interaction’, and on a ‘functional
self-association hypothesis’. From the specific properties of functional interactions, i.e. non-symmetry,

non-locality, and non-instantaneity, it is shown that a biological system can be considered as constituted

functional organization.
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by two hierarchical systems: (i) the (o-FBs) that describes the topology of the FBs, i.e. the functional
organization, with a hierarchical directed graph; (ii) the (p-FBs) that describes the continuous non-linear
dynamics of the FBs with a field. In the framework of this theory, the problem of the relation between
structure and function is considered to be due to the distinction between structural organization and

Some advantages of this approach are: (i) the description of the time evolution, during development,
of the organization of an FBs with an optimum principle, which leads to a clear comparison with a
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426 G. A. Chauvet Self-association increases stability

physical system (paper II); (ii) the description of the space—time dynamics as the variation in space and
time of field variables in a hierarchical ‘space of structural units’; and, consequently, the relation
between topology and geometry, and the existence of non-locality in these hierarchical spaces (paper

I1I).

In this paper, the basic concepts of functional interaction, hierarchical functional organization, and
physiological function are discussed from a mathematical viewpoint, and arguments for the validity of
the self-association hypothesis are given. Specifically, it is shown that, for a particular class of biological
systems that are taken as an example, the domain of stability of the (p-FBs) is increased after functional
association. This property, which is specifically due to the nature of the biological system, corresponds to
an increase in complexity. It will be shown in the second paper that such a self-organization corresponds
also to an optimal principle for the (0-rBs). The case of real biological systems (RBss) is considered in
relation with the present theory, which leads to a new hierarchical representation in terms of fields. Such
representation could be a base for integrative physiology. As an example, some physiological functions,
respiratory and cardio-vascular, are considered and it is shown that the heart shock emerges from the

formulation as a cyclic sub-graph.

NOTATIONS AND SYMBOLS

a rate constant of the transformations between
classes

aj number of elements of E;

g(P,Py) transport function

k(P),k’(P),k”(P) coupling parameters

ki coupling parameter between both levels of
organization (M) and (U)

(n')q 10 distribution of functional links
between structural units at this level:
defines the functional organization

7o space coordinate

7 maximal degree of organization

u,u;u;  structural units

u* ‘pathological’ structural unit having a missing
product

u = (up,u7) ey ; = (ugytty’)

E; enzyme

E; class of elements in the compartmental theory

Eny;  describes input (£,,;>0) or outputs (£,,<0)
for elements of F;

F hierarchical system

F'(I=1,... L) elementary physiological
function: defines the level of organization
(')

Fy;  number of elementary transformations per time
unit from a class Ej to a class £

F,; number of elementary transformations per time
unit towards the environment

G graph of the functional organization

(L}) level of organization

M matrix of the functional organization

N occupation number of the classes

(N,a) representation

N; number of elements in a class E;

P,, 1<a<p products in a structural unit

P,=P,, denotes an o-product synthesized in the

i-unit u;

products in the biochemical pathway: P eu,

Py euy

S biological sub-system at level [

S; substrate

To time coordinate

associated structural units

PbPZ

Phil. Trans. R. Soc. Lond. B (1993)

T! timescale at level 1

U; population of elements ;, each containing j
units

X=[mRNA] concentration of RNA messenger

ax,oy,0, t=1, 2, . . ., rate constants of the chemical
reactions

B(P1 — P) simple passive diffusion factor

D, transformations that describe the functional
interaction

P; = ®(P)) = oy (Py)

k=9y/f allosteric factor

A dilution factor

V' degree of functional organization at level 1

(Y,p) representation
& functional interaction («) from the i- to the
J-unit

Y... functional interaction in the epigenetic system
between a normal and a pathological unit

p geometrical parameter of the biological system;
specifically; stoechiometry in the Goodwin
model

{ = (agouyoryora ik P) A ¢% = {1, by =ouy)l, bg=ay/C,
biro=a,/l, i=1,2 state variables for the
dimensionless problem.

1. INTRODUCTION: SOME REQUISITES FOR
AN INTEGRATIVE PHYSIOLOGY

The objective in this series of papers is to introduce
some concepts and definitions that will lead to realistic
and formalized properties for the functional organiza-
tion of a physiological system in terms of a new
concept, the ‘functional interaction’. As a conse-
quence, biological systems are shown to be driven by
specific criteria of evolution that are different from
those that are found for physical systems.

Many authors have discussed biological organiza-
tion from various points of view, based on a well-
established ‘mathematical or physical theory. Thom
(1972), with his catastrophe theory based on qualita-
tive dynamics, conceived a theory of morphogenesis,
which was extended by Zeeman (1977); Prigogine and
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associates developed a theory of structural self-organi-
zation based on the principles of thermodynamics
of irreversible processes (Nicolis & Prigogine 1977;
Prigogine 1972); structural pattern forming including
the mechanochemical approach to morphogenesis was
investigated by Oster et al. (1983) and Murray &
Oster (1984a,b); Eigen (Eigen 1971; Eigen & Schuster
1979) applied neo-Darwinian principles to macromo-
lecular self-organization. Other types of formalisms
also have been used extensively: transformation sys-
tems (Delattre 1971), compartmental analysis (Con-
rad 1972; Walter 1980, 1983), general and hierarchi-
cal systems (Arbib 1972; Pattee 1970), automation
theory (Kaufman 1985), graph theory (Rashevsky
1961; Rosen 1958; Levins 1970), graph theory for
neural networks (Von Foerster 1967; Hopfield 1982),
information theory (Atlan 1972), and statistical
mechanics (Demetrius 1984).

Although structure and function appear to be non-
dissociable, because a biological function cannot be
conceived without a structure to support it, the
formalization of a functional organization will be
shown to involve hierarchical systems that do not
necessarily coincide with the corresponding structural
systems. Epistemologists have put forth definitions for
structure and function that are difficult to formalize
within a self-coherent theory. The point of view of
mathematical biologists, e.g. Rashevsky (1961), often
addresses the topological nature of biological systems.
Although the topological description seems near to the
idea of a set of relations between elements of a system,
the principles that underlie its origin have to be found
to answer the following questions: how does a func-
tional organization evolve? Does there exist a minimal
number of hypotheses that could explain its beha-
viour? What is a physiological function?

Physical systems at any level of description are
described by their structure, i.e. a combination of
structural interactions, the forces, between elements of
matter. Physical laws specify how the stability of this
set of elements results. Similarly, biological systems are
constituted in elements of matter, and therefore, they
satisfy those physical laws. But, as physiological
systems, they possess specific properties. Because each
substructure acts at a distance on another substruc-
ture, it is shown that functional interactions exist
between any substructures in the physiological system,
which play the role of forces in physical systems.
Functional interactions have three specific properties,
non-symmetry, non-locality, and non-instantaneity,
which give their own unique characteristics to biologi-
cal systems. Because in terms of functional interac-
tions, the observed functional organization has to be a
stable combination of these interactions, a first prob-
lem is to study the conditions of stability of the
functional organization; a second problem is to deter-
mine what could be a criterion of organization, and
ultimately what could be a general principle of
evolution of such a biological system.

In this series of papers, some advantages of the
representation in terms of functional interactions will
be shown for various fields of biology. It is my aim to
show that one realistic and simple hypothesis, the so-

Phil. Trans. R. Soc. Lond. B (1993)
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called ‘functional self-association’ hypothesis, leads to
some useful properties in physiology and physiopatho-
logy. The reason why this hypothesis is useful is
because concepts, definitions, and properties once
developed on the basis of this hypothesis, lets us
express the stability of the physiological function as
the stability of the corresponding hierarchical system
under the following circumstances: (i) for an n-level
biological system, when a condition of conservation of
the number of substructures is assumed: in this paper,
an example is given in the form of an evolutionary
‘Eigen-Goodwin’ model, which shows that increasing
the complexity of its dynamics by self-association of
structural units leads to an increase in the domain of
stability of the dynamics; (ii) when the variational
aspect of the set of functional interactions between the
substructures of the biological system is studied as a
problem of topological stability, which leads to an
optimal principle (paper II); and (iii) when the set
of dynamical processes that are associated with the
functional interactions are conceived as field variables
that evolve under the action of field operators in
particular spaces, called ‘spaces of units’ (paper III).

These problems and a possible solution have been
presented in preliminary form in Chauvet (1987,
1990), together with various examples. Because the
application of these concepts and definitions in the
area of general physiology are important to create an
integrative physiology, a short discussion for the study
of real biological systems will be given in relation to
parallel computers, and their simulation as parallel
hierarchical systems.

2. CONCEPT OF FUNCTIONAL
INTERACTION

(a) Definitions: formal biological systems and
Junctional interaction

Well-defined biological systems, called here ‘formal
biological systems’ (FBss), will be studied first. FBSs
are defined as closely as possible to real biological
systems. Two basic biological features, referred to as
‘mutational’ and ‘equipotent’, characterize an FBS at its
lowest level and determine its construction. Muta-
tional means the possibility of mutation in the macro-
molecular apparatus, and equipotent means that the
same potentialities of gene expression exist in all cells
during their lifetime. The nature of equipotency
between units in a level of organization has a particu-
lar deep meaning, because systems with such a
property are potentially able to elicit a particular
functional organization under some biological con-
straints. Then, as will be shown, the formalized
approach for a description of functional organization
based on equipotency of lowest structures can lead to
variational principles (paper II). The relation
between these properties and those observed in ‘real
biological systems’ (RBss) will be discussed in the
conclusion. In particular, we will have subsequently to
verify whether properties that describe an Fss, corres-
pond to an RBs.

A very common fact in biology is the action of a
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Po i o P o.j
O -
Functional interaction
uj
uj

Figure 1. ¢} is an interaction between two structural units
and #, and is called an elementary function. It can be
identified by the product P, = y§(P,,), which is created
after the interaction. In fact, the set of P, ; for all j gives F}
which is the elementary function expressed by P, ; and which
defines a level of organization denoted as k.

structure on another structure. For example, one
neuron emits an action potential which propagates
along the axon, releases a presynaptic transmitter, and
modifies the soma potential of a postsynaptic neuron,
which, in turn, will transform the soma potential of
other connected neurons. Endocrine cells synthesize a
molecule which is carried through the blood flow, and
which acts on another cell. During development,
molecular signals are emitted by cells to inform others
about their location in the tissue. Communications
exist between all the structures in organisms, either in
the form of a molecule, a quantity of matter, or even a
non-observable parameter. In each case, a functional
interaction is described as the transport, with a finite
velocity, of an activating or an inhibiting signal
between a source, which emits, and a sink, which
receives. Then, a combination of these functional
interactions constitutes a biological system, and the
dynamics of this system can be called a physiological
(or biological) function in the given organization.
From a mathematical point of view:

1. A functional interaction is defined by two ele-
ments, noted #; and u;, and a signal ¥;. One of the
units, the 7-unit, acts upon the j-unit, by emitting
‘something’, a signal, that reacts with the elements of
the j-unit. Such a signal will be called an elementary
physiological function (more simply, an elementary
function) and is represented by y; (figure 1).

2. A structural unit is defined as a structural
equivalence class, that contains only elements whose
physico-anatomical structural properties are identical.

Then the system is driven by equations such as:

dyg/di=fi(Y Yz, - - Ypprpz, -5 0p)  Bj=1,..
where the ps are specific geometrical or physical
parameters. This new representation of a biological

system will be denoted by (,p).

(b) Specific properties of a functional interaction

Three properties of the functional interaction cons-
titute the unique specificity of a biological system: the
non-symmetry, non-locality, and non-instantaneity.

Non-symmetry, because an elementary function

Phil. Trans. R. Soc. Lond. B (1993)

acts from one structural unit to another, from one
source to the sinks, but not from one sink to the
sources: the signal is transformed in the source before
being emitted. Then, an elementary function represents
a non-symmetric, unidirectional action, because the
same molecule (or the same signal) will not directly
feed back from the sink to the source. Thus, the
operator that describes the dynamics of the elemen-
tary function will be non-symmetric.

Non-locality, because an elementary function acts
at a distance, and creates couplings between distant
structures. This property comes from the extension of
biological structures in physical space: two sources can
be infinitesimally close in the sense of a continuous
density, but the corresponding sinks can be very far
because of their extented structure in cartesian space.
That is the case of a motoneuron, whose cell body is
located in the spinal cord, and its axon in the sciatic
nerve that acts on the leg muscles. Because the
transport of this interaction, neural activity, occurs in
the continuous space of one neuron, say with a finite
velocity v,, and not in the continuous space of neurons
reduced to points, what we see at time 79 and at point
7o in the space of the real neurons is what was emitted
at time 77= Ty— d[v, by neurons that are located at r;
where d=||r;— || (figure 2). This non-local property,
which expresses the coupling of biological substruc-
tures at a distance, is very general, and is the
consequence of the division of the system into several
levels of organization (Chauvet 1993). To describe
this fundamental property of biological systems, the
interaction operator that describes the dynamics will
have to be non-local.

If the velocity of the transport of an elementary
function is finite, then there is non-instantaneity of
both emission by the source and reception by the sink,
and, as described above, this property implies non-
locality. This implies delays in the formulation, as well
as non-symmetry and non-locality, and is at the root
of important properties for biological systems that will
be explored in paper III.

3. FUNCTIONAL INTERACTION BREAKING:
CONSEQUENCES ON THE STABILITY OF
BIOLOGICAL SYSTEMS

(@) Functional interaction breaking: death or life

(i) The choice
What happens when an interaction in a functional

» by (1)

organization is suppressed because of internal con-
straints, e.g. mutations at the genetic level, or external
constraints, e.g. the presence or absence of food at the
metabolic level? If the functional interaction under
consideration is vital for the system, with the meaning
that the product (the elementary function) which is
carried from the source to the sink is necessary for the
life of the system, then there are two eventualities for
the system: either this product comes from another
structural unit in the system, or the system dies. The
choice depends on what happens at the lower levels
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Figure 2. Non-locality due to the existence of several levels of organization. This figure shows the case of nervous
tissue where neurons are represented in physical cartesian space with an axis for each level. At level 2, one neuron is
represented by one point in the space of neurons. Thus, we have neurons at point r; and r,. At level 1, the space of
synapses is Dy(rq,71), i.e. the set of synapses that connect neurons at r; and neurons at r,. The finite extent of the
neuron in physical space provides non-local effects in the space of neurons where they are infinitesimally close.

of organization, i.e. in each source that makes the
product.

For example, within the classical scheme of protein
biosynthesis, the repressor is emitted by the regulator
gene, and acts on structure genes. There is an
elementary function from the source, i.e. the regu-
lator, and the sink, i.e. the structure genes, which can
be identified to the RNA messenger. The same
analysis can be made for the metabolic pathway:

S1—>S2 e

—’Si,l—hgi—) e S,,,

where an enzyme F; which can be identified as an
elementary function, acts sequentially on a product
S;_1 to create S;. In this example, S, can be the final
product of a metabolic pathway. If one enzyme in the
chain is suppressed, then the survival of the system
implies another pathway, i.e. another elementary
function that originates in another structure gene,
results in S;. This kind of substitution is often used at
the metabolic level.

(i1) Functional self-association hypothesis

The preceding section gives a causal interpretation
for the existence of a functional interaction, because, if
each structural unit could produce the set of enzymes
that are necessary for the life of the system, then there
would be no functional interactions. With the func-
tional breaking process, a source is transformed into a
sink for a given product: an elementary function is
then created from the source to the sink. The follow-
ing hypothesis constitutes the basis for generating the
levels of organization of the biological system.

Phil. Trans. R. Soc. Lond. B (1993)

Hypothesis I:

If, at a given time, a structural unit does not
produce the elementary physiological function (i.e. for
example P;in figure 1) that is necessary for its ‘living’,
then for its survival, it must receive this function from
another structural unit that possesses it. In that case, a
new elementary function is created.

There exist many examples in biology that justify
this hypothesis: the passage from one metabolic path-
way to another when environmental conditions vary,
the grouping of cells when the environmental changes
(e.g. Dictyostelium discoideum). This hypothesis used
for any physiological mechanism constitutes what we
have called the ‘principle of vital coherence’ (Chauvet
1990). A later section includes a model for illustrative
purposes. First, the concepts introduced in the fore-
going sections will be defined more precisely.

(iii) Functional hierarchical organization: the consequence of the
choice

The organization of the system into a hierarchical
one is a consequence of the choice made by the system.
Let us consider a set of v structural units which have
the same p individual physiological products Py,
1<a<pu, (i.e. the same potentialities) these products
being necessary for the ‘life’ (i.e. the functioning) of
this set. If several units, denoted «*, have lost one or
more such physiological products P,, then u* dies
unless P, is given by another unit u which possesses
this P,. With the present description we say that an
elementary function has been created from u to u*.
This mechanism of functional self-association explains
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Figure 3. Association between two units. A ‘pathological’
unit %*, i.e. a unit % in the space of units which has lost a
physiological function (or a product), associates with a
‘normal’ unit %, in order to retrieve for itself this product.

why there exist particular functional links in the
system. Many such links could be realized that satisfy
many combinations between a subset of u*-structural
units and a subset of u-structural units. This idea will
be expressed in the concept of functional complexity
(Chauvet 1987) or potential of organization (Chauvet
1990).

According to hypothesis I, either u; will die out or
enter into association with another unit u; to form
uy = (uy,u7) which will be the origin of a new popula-
tion U,. In general, u; will give rise to a population
U, 1, with each element possessing a supplementary
unit. As shown now, this process, composed of succes-
sive associations, creates a hierarchical system (figure
3). It is analogous to the process of tissue specializa-
tion and even to the biological concept of organogene-
sis, in which the micromutation is replaced by a
controlled alteration of gene expression.

Let U; be the population of elements u, each
containing j units. These elements can be obtained in
different ways by associations of the type:

*

(- 180), - -y (Gt - s (570).

For example, figure 4 contains the units u = (47,
U3) = (ul*a(u%ul*)) = (”{:((ulsuf)suf)) and Uz = (u23uik) =
((ug,ug),u7). If, in this description of populations of
units, we take into account the physiological functions
affected by non-permanent micromutations, we see in
particular how tissue specialization may occur (figure
5). In the following, the numbers in parentheses
around the arrows of the hierarchical group (such as
described in figure 5) show which products have been
lost by a unit. Let us suppose for example that u
‘initially’ possesses three physiological functions P;,P,
and Pg; that P;,P, are eliminated from the unit
(giving u7) leading to the creation of (uf,u); that Py is
then eliminated from the unit »; which then associates
with (u47,%); and that finally P; is eliminated in a unit
% (giving u7) which then associates with (u7,u;). Let us
now assume that u, loses P;,P, at a given time, then
unit u, will be specialized in the synthesis of Ps. The
population U, thus constructed is by definition a
specialized tissue. On the contrary, u3 obtained from
ug for example by the loss of P; in u;, would be forced
to associate with u,. Finally, a unit of type #;, and thus

Phil. Trans. R. Soc. Lond. B (1993)

Figure 4. Functional self-association hypothesis. Units ug,ug,
uy are built by association between a modified unit #; and a
normal one u. For example, units up = (u,u41), u3, . . . are
built by association.

a population U;, obtained by self-reproduction, will
be created. This population possesses an important
property since U; is made up of tissues, one being
identical to u,, specialised in the synthesis of P; and the
other being identical to us, specialised in the synthesis
of P, and P,. Thus an organ composed of differen-
tiated tissues is obtained.

This very simple and formal schema constitutes an
understandable basis for a definition of a physiological
system, considered from the functional viewpoint. The
above formal example shows a process that leads to
units called uy4 specialized in the synthesis of a specific
product Ps. It appears that the sequence of functional
interactions are organized in order to carry out this
specific elementary function. They together involve
dynamical processes that vary in a common time
scale. Thus, units uy,us,us, which are associated within
u4 to produce Ps, constitute a level of organization. For
reasons that will appear in part IIT of these papers,
timescales are chosen to specify a level of organization

Figure 5. Tissue specialization. Numbers in parentheses
represent the product which is transported from the source
to the sink. Three such products are assumed to be necessary
for the cell living. At a given time, the two products P, and
P, are assumed to be missing. Thus, u; associates with # to
create a unit 4. If Py is eliminated from another unit %, this
unit can associate with u, to create u, and so on. In the
figure, such a set of transformations at successive given
times, e.g. uy looses P; and Py, leads to a unit u, that is finally
specialized in the synthesis of P
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in the hierarchy of the physiological system. This idea
of the structuration of the functional hierarchical
system from their dynamics will be developed in the
following. They imply a certain ‘order’ in the system
which makes simpler a system more complex. In this
paper, these concepts are illustrated from a specific
model.

(b) Evidence for the existence of self-association:
an increase in stability

Let U, be the population of units . We suppose
that a given unit ufe U is affected by a micromu-
tation or any perturbation of a physiological mechan-
ism. According to the principle of vital coherence, this
unit will survive if and only if it can be associated with
another normal unit in U;, which has the same
physiological properties. That association between u,
and u{ generates a new unit called u, = (uy,47), and
increases the complexity of the dynamics at the level of
metabolism. Then, the level of organization for U, the
new population of units such that u, is one unity
higher that the level of organization for U;. Note that
the self-association is bi-unitary, i.e. it can be realized
with at most two units at the same time. One way to
know if such a self-association may occur between two
units, which are two hierarchical systems according to
the last section, comes from the study of the stability of
the dynamics before association and after association,
whatever the nature of that mechanism. An increase
in the domain of stability of the new dynamical system
obtained by association will be favourable to the
existence of that association between units. This
hypothesis will be tested below for a particular model
that includes two levels of organization: the level of
metabolism inside the elements, and the level of
replication of these elements.

This process of self-association can be easily general-
ized: let w,, = (,uf) be a unit in Uy 4, which is
created by an association between a unit in U; and a
perturbed unit »y in Uy, or an association between a
perturbed unit % in U, and a normal unit % (e.g. see
figure 5). All intermediates give the possibility of self-
association (Chauvet 1990). Such a process leads to
the construction of recurrent models obtained for
k=12, ..., J. After a transformation of the corres-
ponding dynamical systems into systems without
dimension, the condition of stability of the linearized
system around equilibrium points is derived, and the
numerical investigations of linear and nonlinear sys-
tems are carried out. The stability of the system that
corresponds to a higher level of organization is shown
to be increased, even if its complexity, i.e. the number
of elementary functions, is increasing.

4. A SUGGESTED THEORY FOR THE
FUNCTIONAL ORGANIZATION OF AN FBS

(a) Biological system and physiological
Junction

Definition I: system and function
A structural unit is a structural equivalence class
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constituted by units that are identical with regard to
their structure, and independent with regard to their
function (for certain criteria). An elementary physio-
logical function is the collective behavior (cooperation
in some tasks) of at least one functional interaction.

A physiological function (a biological system) is the
collective product of a set of structural units which can
be hierarchically classified according to their elemen-
tary interactions.

In the following, notations are Latin subscripts 4, j, . .
for units u,u;, . . ., and Greek subscripts for products:
P,;=P,, denotes an a-product synthesized in the
i-unit . The functional interaction (a) from the i- to
the j-unit is denoted as Y§. A level of organization is
represented by a Latin superscript. For example, in
figure 1 with an elementary di-graph:

1. Each element u; or u; (nodes ¢ and j) represents a
structural unit with an elementary function ¥ from
to u,.

2. However, the result of this interaction is a product
which may be either the direct value of the elementary
function:

Pyj= 5 (Pois 1), (2)
or the transformed value:
P j=@i(Py 5 1) = ¢ - i (P 57), (3)

inside the unit localized in 7. The variables P,jor P, ;
will be identified as elementary physiological func-
tions. More generally, u products P,;, 1 Sa <y in
the i-unit could occur in the realization of the
elementary physiological function.

3. A physiological function will result from a set of
elements that are hierarchically organized and func-
tionally interacting. The physiological function will be
identified with the collective behaviour of the elements
whose product (in equation (4)) is denoted by F:

F=f(F R, .., P, @)

where F' (I=1, ..., L) is an elementary physiological
function. A system in which F=0, or a constant, is
self-controlled.

Definition II: level of organization

A level of organization (LY), as an elementary
physiological function F', is identified by the collective
behavior, i.e. the dynamics, of a given set of L
elementary functions between structural units.

Therefore, a physiological function is the collective
product of a set of elementary physiological functions
such as F', and because (Z!) uniquely defines one level
of organization and an elementary physiological func-
tion, then a physiological function is a set of L levels
such as (L), i.e. a hierarchical system that produces F.
Most often, the dynamics is specified for a given time
scale of the process, which therefore defines the level of
organization.

Definition III: degree of organization
The degree of the functional organization of an FBs
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at level [ is the number V' of structural units (structural
equivalence classes) that constitute the subsystem at
this level.

So, the creation of a functional link between one
structural unit and the sub-system is the consequence
of the association of this structural unit with the sub-
system. The association increases its degree of func-
tional organization.

(b) Functional organization

Definition IV: graph and matrix of the functional
organization of a ¥es: $Y(G,T)

A biological sub-system S®) at level / is described by
two elements (figure 6): the graph G of the functional
interactions, and some parameters characteristic of the
dynamics of the system:

1. The graph G specifies the elementary functions
(edges) between structural units (vertices). A matrix
M of elements 0 and 1 is associated with this graph
(incidence matrix of G).

2. The parameters (e.g. timescale T%) for level /, are
defined by the dynamical processes that describe the
collective behaviour at this level.

M has p rows, i.e. the number of elementary
functions like P, (x=1, . . ., u), and V' columns, i.e. the
number of structural units & (j=1, . . ., V') that are
included in the collective function at level /:

ay= 1P, €, (5.1)
M = (a,),
Ay; = 0©Pa,j ¢ Uj. (52)

In the first case, the structural unit »; is called a
source. All structural units that do not possess P, are
called sinks. An elementary function is created from a
source to a sink:

Yi#0 < P, eu P, ¢ u. (6)

4

1
2

0101

0010

| o110

4 6 M= 000
1001

1010

Figure 6. An example of a graph and its incidence matrix to
describe, together, an organization whose degree equals 4.
Numbers inside nodes of the graph represent the structural
unit, i.e. the column of the matrix (on the right). Numbers
along the arrows represent the product which is acting from
the source to the sink, i.e. the rows of the matrix. Therefore,
a row o is constituted by a zero in column j if the structural
unit % is a sink for the product P, ;.

Phil. Trans. R. Soc. Lond. B (1993)

Relations (2) and (3) are now written, more
generally:

Poz,k = lp_?k(Pa,j))
Ff = ®%(P,;) = ¢f - Yi(P.)). (7)

Data (1) gives a description of the topology of the
system, i.e. the relational aspect between its elements,
and their properties will be studied in paper IT. Data
(2) is associated with the dynamical process for the
considered level, and their properties will be studied
in paper III. The timescale will be shown to be
important for the construction of the functional
organization. Moreover, it implies a close connection
between structure and function.

Definition V

The functional organization at level / is defined
by the distribution (2{"),_ 1,u0, of functional links
between structural units at this level. Then z{" is also
the number of zeros in the row o of the matrix M, i.e.
the number of sinks for the function P, of the system.

(¢) Functional and structural organizations

When n levels of organization are realized within
one physiological function, i.e. when a set of elemen-
tary physiological functions F*, k = 1, n, constitute a
physiological function F, we have the relation F =
F(FYF? ..., F7). This equation expresses an implicit
control, or an intrinsic regulation, between the indi-
vidual F¥s. Its relation to equation (1) is clear: F*
represents the collective product created by the ele-
mentary functions Y% at level £, and F is the collective
product of all levels that constitute the hierarchical
biological system. Of course, this relation is a con-
densed form of several equations such as (1):

t;,kl — g,kl(wizill, Ce Z;)nn)

each of which describes the dynamics of elementary
functions between an ¢-structural unit at level £ (L)
and a j-structural unit at level [ (L"): 4,7 = 1, p, and £,
[ =1, n. When y&" # 0 with £ # [, the corresponding
link is called an inter-levels link, because it implies
equation (4). When two physiological functions hav-
ing an interaction among them (such as the respira-
tory and the cardiovascular functions, represented by
airflow and cardiac flow respectively) are considered,
two parallel hierarchical systems are obtained (figure
7). An important property as regards the practical
consequences, is the ‘relativism’ of levels in that
functional organization. Relativism is involved when
one variable, at level [ for the first system, is at level &
for the second one. For example, a group of neurons,
which are organized in a hierarchical system, can be
connected with a group of neurons organized in
several subgroups of neurons, where the groups, and
then the levels of organization, are defined by their
collective behaviour.

Although it may be easy to think of a biological
system in terms of structural levels, due to its anatomi-
cal description and organization (from cellular to
organismic structure), it is considerably more difficult
to describe an organism in terms of its functional levels
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Figure 7. Functional interactions within and between levels
of parallel hierarchical systems. In terms of functional
interactions, a given unit at a level (k) is composed of a set of
units at level (k£ — 1), i.e. represents the collective behavior
of these units, and is a physiological function. This physiolo-
gical function is therefore a hierarchical system. The same
structural unit can be included in the collective behavior of
level ([ — 1) in another hierarchical system. An example is
given by a system that controls another system, as shown by
nervous system and respiratory system.

of organization. However, due (at least) to the
relativism property, it appears to be necessary to
distinguish between the structural association of the
units involved in a given structure, and the functional
association among units involved in a given physiolo-
gical function. In terms of functional interactions, an
organism is identified as a set of parallel hierarchical
systems, one for each physiological function, and can
be modeled and implemented on a parallel computer.
Thus, one major aim will be to investigate the
conservation laws applicable to a given interaction
and to a set of interactions, i.e. a physiological
function (see paper II), to determine which aspects of
the related organization of an organism are kept
invariant.

All these concepts and definitions are useful to
conceive the biological functional organization of
some systems. I have studied a particular system
of metabolic and self-replicative units with two levels of
organization: the so-called ‘Eigen-Goodwin’ system
(Chauvet 1987), which will be considered in the
following as an example of an evolutionary process.
Such formalized description has additional interesting
consequences regarding the concept of potential of
functional organization, and the ability to define
dynamics in the representation (,p) (see paper II).

5. THE STABILITY OF A 2-LEVEL
METABOLIC FBS IS INCREASED BY THE
BREAKING OF FUNCTIONAL INTERACTIONS

(a) Description of the FBS

(i) Definition of the ‘Eigen—Goodwin system’

The rBs that we call the ‘Eigen-Goodwin system’
includes three levels of organization: the two lowest
(noted 1 and 2) constitute a ‘Goodwin system’, i.e. a

Phil. Trans. R. Soc. Lond. B (1993)
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hierarchical system of regulated enzymes (second
level) and genetical biochemical reactions (first level),
both defining the metabolical unit (M) (figure 8); the
highest (noted 3) is a ‘Eigen system’, i.e. a set of self-
replicating units, e.g. cells, with ecological-like con-
straints that define the population level (U) by the
association of metabolical units. Thus, an ‘Eigen-
Goodwin system’ is a 3-level hierarchical system.
Such a system is defined by: two neo-Darwinian
postulates (P1) and (P2), the preceeding hypothesis
(I), and a second hypothesis (I’) which establishes the
kinetic mechanism of the association, as follows:

Pl: a metabolic network (M) synthesizes a protein
P, j, which is responsible for a physiological function
involved in the functioning of a self-replicating unit
uel.

P2: such a network is submitted to gene micromu-
tations that can stop the synthesis of P, ;.
Hypothesis I: three possibilities exist for the units that
underwent a disadvantageous micromutation:

1. The unit dies if [[Py, ;] <Py, ;9] where P, 9 is a
threshold.

2. An association with other units whose properties
are not necessarily identical, but which possess always
a P, such that P,;=y% (P,;). Therefore, an o-
functional interaction has been created from the ¢-unit
to the j-unit.

3. A substitution from a parallel pathway in the
metabolical network. However, this possibility is simi-
lar to the second one from a formal point of view.

Hypothesis I": the mechanism of inter-units associa-
tion is similar to a chemical reaction process. It is
justified by the common observation that a random
meeting between more than two units at the same
time is very unlikely.

These properties allow us to write the dynamical
systems that describe the phenomenon of self-associa-
tion in both levels of organization.

(i1) Functional interaction breaking in the metabolic pathway

Let us assume that a micromutation in the lower
level breaks the sequence of reactions in the metabolic
system, for example from the product P, = P,, €u; to
the product P = P, ,s€u,, with u/ be this unit. If 4
needs P, ; for ‘living’, then, according to hypothesis I,
an elementary function from u to any other unit u
has to be created. According to the notations defined
in equations (7), let ¥, be this interaction which

means that:

Pi,u' = l//ftlul'(Pi,ul) Pi,uf € u; I)i,ul € U. (9)

In the present case, with only one functional interac-
tion represented by the product P; emitted by & and
that acts on u, we can simplify the notations as
follows:

I)i* = [//(Pl) I)I»*Euf P,-Eul. (9/)

Because of the micromutation that has disrupted the
biochemical pathway (the enzyme E;_; is suppressed),
the product P; does no longer exist in u;. Therefore,
P; 1 which is obtained from P; in this unit disappears,
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Figure 8. Goodwin model of a regulated enzymic pathway. (¢) Enzymes E, i = 0, n = 1, result from clusters of
structure genes such as G; and polysomes R; (top). They enter in a metabolic pathway which leads from substrate S,
to the terminal product P,. The synthesis of this product is regulated by an allosteric inhibitory feedback at G;, and
at enzyme F,. For example, a unit «* is obtained when enzyme E; is modified into Ef and disrupts the reaction
Py — P;. (b) The same 2-level system where collective functions E; and P, are indicated at each level with their

timescale.

and the unit thereof, except if the product P; can be
captured from another unit that possesses it (principle
of vital coherence). In this case, an association
between the metabolic pathways, at the higher level,
is obtained. We now discuss the general formulation of
the possible mechanisms of this association, and then
we study the stability of the process.

(ii) Basic mechanisms of the association

Various mechanisms can be assumed for the crea-
tion of this association, which lead to a relation such
as in equation (9). For example, P,eu; can diffuse
passively towards the ‘pathological’ unit ', and, when
it arrives in u; (we shall then call it, Py all the
metabolites in this pathological unit being denoted
with a “*’, and assume subscript 7 to be 1), it can
initiate the transformation that leading to P;. Such a
sequence of transport-transformation can be repre-
sented by the diagram:

P3P
s (10)
Pr
£
W P A
I T
0 ¥ Oy
g7 -
® > oy
- P P —»P; P

®,)

X, Y,
—» G, —»R, » E;

Figure 9. Association of two structural units, the hierarchical
system described in figure 84, for which one link is broken
before P; in the biochemical pathway represented in figure
84, for a unit *. The product P in u is assumed to be carried
in «*, and acting (functionally) on Pj, in order to maintain
the biochemical reactions. As in figure 84, P} feeds back on
the first enzyme.

Phil. Trans. R. Soc. Lond. B (1993)

where the left part is non-local and the right part is
local. Then:

Py =0(P) = ¢poy(P),

i.e. equation (7). It is possible to consider various
types of systems to describe these transformations by
considering different mechanisms for @,¢,:

1. The simplest mechanism could be a linear
transformation from P; to P that includes both
transport and chemical reaction. It is similar to a
classical chemical reaction, i.e. a transfer from the
P,-compartment to the Py-compartment:
P3P (11)
where the direct transformation is denoted as @. This
case, which is the simplest, is specifically studied here
with:

Py = o(Py),

and the direct transformation will be expressed below
in terms of a rate constant o.

2. A passive diffusion of the product P; can be
explicitly included in the previous transformation:

P, - P
&1 N /'0(1,

Py (12)
where Y and ¢ are replaced by linear transformations:
(1) g1 (P, Py) = B(Py — P{) to describe a simple passive
diffusion with coefficient 8, and (ii) ¢ (P;) = P; given
by the kinetic equation:

dPj(dt = — apP5 + 0y P},

to describe the chemical transformations with the rate
constants o(;,0.

(b) Mutations in the metabolic system: Level 2 (M)

(i) Dynamics of the epigenetic and metabolic systems in a w-unit
We generalize the metabolic system, described by

Goodwin (1976) as an epigenetic system (figure 8a)

into a metabolic pathway with an allosteric inhibitory
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control, and the same kind of feedback interaction
with the structural gene. Specifically, it includes two
control loops, one is an inhibition with a feedback at a
point of the metabolic pathway (I-loop), the other is a
repression of structural genes (R-loop).

According to the previous section, because of the
very different time scales of these processes in the
metabolic pathway and in the epigenetic system, this
u1-unit is a hierarchical system with two levels (figure
8b). Each enzyme E; in the metabolic pathway, which
transforms a product P; into another P;, 1 in the higher
level with the time scale {T2}, results from the
collective behavior, i.e. the dynamics, of the epigenetic
system at the lower level in a time scale {T1}. The
control between the two levels is given by the feedback
loop (R) from the end-product P, that acts on
X;=[mRNA], the concentration of messenger RNA.
The allosteric inhibitory interaction is described by
the term:

Sy @,1,00) = o (B + YPP) = o/ (1 + kP?),

with ap=a/f, and k=7/f. In this equation, & is the
stoechiometry of the interaction, i.e. @ molecules of
the end-product P, bind with the aporepressor.

The u;-units function according to the two following
dynamical systems with their own time scales:

(13)

1. The epigenetic system with a R-loop for the
allosteric feedback repression is given by:

dXi/di* = — yxX; + fri(Po; OhsKr0lk0),
dE/dt' = — y,E; + %X,

tte{T. (14.1)
It is assumed that the catabolism of E; is in direct
relation with E; whether E; is bound or not with P;.

2. The metabolic system with a I-loop for the
allosteric feedback inhibition is given by:

dPlldt2= —061P1 +ﬁ(Pm d): K) OC()),

dPijd2 = —o,Pi+o;_1P;_1,
dP;1/dP = — a1 Pip1+ P,

2 e {T3, (14.2)

where yx,7%,7:,0%, ¢ = 1,2, . . ., are the rate constants of
the chemical reactions. The allosteric inhibition feed-
back term f; is similar to that in equations (14.1), with
different values of the parameters. This metabolic
system is composed of enzymic reactions such as
P;— P, with velocity v, = k3;,E;P;/(K,, + P;), where
Kys,,ks; are the Michaelis constants of enzyme E;, and
the rate constant of the reaction: EP;— E; + P; ;. If
P; < Ky, then v; = (ksi/Kpri) EP; = P

The two systems (14), which correspond to two
distinct levels of organization, are decoupled in time.
This means that the value of the concentration.of the
enzyme E; is a constant during the dynamics of the
metabolic pathway that leads to the end-product P,.
Therefore, because of the functional hierarchy, «; is a
constant in the system (14.2).

Phil. Trans. R. Soc. Lond. B (1993)
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(i) Dynamics of the metabolic pathway in a ug-unit: a general
and genemtive schema of the association

On the basis of these simple mechanisms, a more
general schema for a metabolic pathway system,
corresponding to the dynamics (14.2), can be written
in terms of compartments (R. Costalat, personal

communication 1991):

oy og a3 g
—> P >P; ->P; >P; > ..

all &N &N all

—-P »>Py, >P; »>P, — ..
ap oz ag ay

’ (15)
where each product can diffuse from one unit to the
other according to the transport function g(P,P;).
The corresponding dynamical system is:

dP/dt = a; 1 P;_1 — 0P — g(P,P}),
dPr/dt = a; P71 — 0P + gi(PLPY),

i=23 .. .. (16)

In the present case of association between the
metabolic systems (14.2) where n = 4, let us assume,
for example, that ay becomes null in a given unit u,
leading to a ‘pathological’ unit u. If u receives P,
from u;, and if P{ can also diffuse towards u;, the

following schema, deduced from (15), will be
obtained:

l 1

P - P;s ->P; »P; >
& N gzN

P, P, >P; > P, —>

1 | (17)

This schema is shown in figure 9. Similarly to
obtain the dynamical system (14), it can be written as:

dP/di = — oy P + f14(Py; @,K,00) — g1 (Pr,P1),
dPy/dt = — apPy + o, Py,

dPs/dt = — asPs + 0oPy — g3(Ps,P3),

dP,/di = — oy Py + 0o5Ps,

dPfidt = — ayPT + f14(P5; @,K,00) + g1(Pr,PT),
dPs/dt = a, Py,

dP3/di = — o3P5 + g3(P3,F3),

dP;/dt = — a P} + asPs. (18)

The case of a simple passive diffusion for P, and P,
is obtained as described above by putting:

a(PLPr) = pi(PL — PP,
&(Ps,P3) = PBs(Ps — P3).

We can simplify this kinetic system by using the
schema (11) rather than (10), i.e. by introducing the
constant a. With the non direct feed-back of P; on Py,
the following system of equations is obtained:
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4(a)
a42I
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4
0(42
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RE]

Figure 10. () Stability area is increasing when the system (10) (full lines) is complexified into system (12) (dotted
lines). For each system, i.e. each closed curve, the corresponding domain of stability is outside the internal space:
expression of the condition of stability in plane & = 1, for two values of k (x = 0.1, figure at the top; k = 0.01, figure
below) that expresses the ‘intensity’ of the molecular linking. (4) Extension of the preceding results regarding the
stability for an association between a unit #_; with degree j — 1 and a unit «,. Such an association is represented by
the factor K; — I'; (where each term comes respectively from the linear and the nonlinear parts of the generalized
dynamical system (14) in the derived characteristic equation) as a function of the added parameter o; , ; forj = 1,2,3

(Machbub et al. 1992).

dPy/dt = — ay Py + f1.4(Py; @,K,00) + f14(Ps; @,k,0),
dP,/dt = — axPy + o1 Py,

dPsjdt = — (g + @) Ps + ataPs,

dPdt = — a,P, + osPs,

dP;jdt = — P} + aPs, (19)

where o is a positive constant, included in @ as
explained in paragraph 1 above, which simply des-
cribes the non-local contribution of product P;€u; to
the production of P;eu;. It is assumed here that P;
can modify the synthesis of P; in an additive manner,
in the same way as P4, and that the coefficients for the
degradation of Py and Pj are the same. Such a system
represents the dynamics of a new unit noted u, = (y
uy) (figure 9).

In reality, structural units are located at different
points in the physical space. Thus, the variation in
time of the product satisfies partial differential equa-
tions that describe the dynamics in u(7) and in u*(r) at
two points 75 and 7. The present study will be extended
to these cases in the third part of this work.

(iii) Mathematical study of the dynamics in a uy-unit: specific
system (19)

The system (19) is made dimensionless by using a
transformation given by Walter (see Rapp 1976)

where:
1/&1) 1/4 l* _ Ct

{ = (apoxoyoy K by = o/l

Phil. Trans. R. Soc. Lond. B (1993)

by = oty[C

A new system of equations is obtained:

dxl 1 1

P R e 2 " (21.1)
1+ (gx5>

de/dt = — boxg + xy, (21.2)

dxg/dt = — (bs + bs)xs + %2, (21.3)

dxy/dt = — bgxy + x3, (21.4)

dxs/dt = — bgxs + x5, (21.5)

in terms of new state variables:

1= apt % (%) = X (8) x%(t) = axY(¢),
x3(%) = agPy(t) x4(t") = a,Po(t) x5(t") = asP3 (1), (22)

now with dimensionless coefficients 4; and &; in place of
dimensional ones a;, k and @. In this example, the
functional interaction (9), created by a survival
condition (hypothesis I), is mathematically expressed
by equation (21.5), and corresponds to equation (8),
where £ =/[i= . This is a very simple case of an
organic link in a given level of organization, here the
metabolical level (M).

Walter (19694,6), Viniegra-Gonzalez (1973) and
Rapp (1976), have studied the stability of the system

bioo =0, i=12. (20)
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(10), which describes the time evolution of units uy,
and they determined sufficient conditions for the
system to be asymptotically stable. Chauvet & Girou
(1983) deduced the stability of system (21), which
represents ug = (uy,uy), from an analysis of the linear-
ized systems. It was possible to show numerically that,
around steady states, the domain of stability of the
new system (21) of units uy = (uy,u") is larger than the
domain of stability of the preceding one (14.2) with
n = 4 for units u;, i.e. more stable. Results are shown
on figure 10. For a given set (tt,01,00,() of para-
meters, the condition of stability of system (14.2) (with
n = 4) is studied in the plane (a3,0,). The domain of
stability of the 1-unit metabolic system is outside the
solid line. The same study is repeated with the system
(19) (corresponding to the 2-unit metabolic system
(u,u*)) for various values of o (only one value of & is
represented in figure 10a), and for increasing values of
parameter k, which both describe the existence of the
association. We can see that the area of stability
(represented by the space outside the dotted lines)
increases when the formal biological system is com-
plexified. In other words, unit u; = (uy, ;) is metaboli-
cally ‘more stable’ than unit ;. With this expression, I
want to postulate that a more complex system is more
likely to exist.

More recently (Machbub et al. 1992), we have
studied, in the same way, the stability of units
#, = (4;_1,uy) that are obtained with the same self-
association process as ug = (u3,u7). The linear part of
the system is shown to be exponentially stable.
Moreover, the stationary states of 4; are asymptotically
stable through a balance between the linear and non-
linear terms of the equation that describes the time
evolution of ;. An important result has been obtained
for the domains of stability of successive units u:

4
locally, unit % is more stable than u _;. All these

results are confirmed numerically (l\/Ijachbub et al.
1992): successive associations increase the domain of
stability (figure 10b). So, building an association by
creating a functional interaction appears to lead to
greater stability for the level (M). It is possible that
this mathematical property could be generalized to a

class of dynamical systems such as (18).

(iv) Numerical study of the dynamics in a uy-unit: general
dynamical system (16)

The same method has been used to study the
general dynamical system (16), not mathematically
equivalent to the specific system (19). Numerical
simulations have shown that, in this case too, associa-
tion increases the domain of stability. The values of
parameters are: o; = 0y = 1., a9 = 50., ¥ = 1. Coup-
ling between the two units is realized by simple passive
transport: g(P,P’) = B,(P; — P}) Vi, and the study is
made in the plane, o3,0,. An increase in stability can
be shown even when all the coefficients f; are assumed
to be unequal, and, in this case, the higher the value
of f;, i.e. the ‘intensity’ of the coupling, the wider is
the area of stability.
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(¢) Dynamics of the population of units u, = (u,u;)
at level 3 (U): idempotence of the structural units

The unit #; is also a self-replicative unit which can
reproduce itself following above neo-Darwinian pro-
perties (P1) and (P2) from Eigen (1971). A constant
overall organizational constraint is imposed to the
system, which has the meaning of a constant overall
flux constraint, requiring the conservation of the
number of elementary units.

Let u, be the number of units, i.e. the ‘density’,
obtained by a bi-unitary process in which ie[1,n — 1]
and je[l,n — 1] units are being associated. If U,
denotes the set of units like u,, then the population:

r

where 7 is the maximal degree of organization, evolves
according to the dynamical system:

3] un))un + Z kijuiuja

i+j=n

du,/dt = (a, — A(ug,uy, . . (23.1)

Yonu,=c n=12,...,r (23.2)
where £; is a coupling parameter between both levels
of organization (M) and (U). Here A is a function that
expresses the condition of conservation for the total
number of elementary species like ;. In fact, this
condition is similar to the control equation (4) for the
system (23): let F be the assumed physiological
function realized by all units. Then F is a function of
the u’s that themselves depend on the P/’s, in particu-
lar on Ps:

F=f(®(P)), (24)

because in this example only one functional inter-
action @ exists, which creates the non-symmetry
source — sink between the units, and this interaction
is the elementary physiological function P carried out
at level (M).

A simplified form of equations (23) was assumed by
Eigen (1971) in his model of macromolecular evolu-
tion where A would be the dilution factor £. This
conservation equation (23.2) leads to:

du,
?ﬁ(g) =0, (25)

and:

cA(uy,ug, -

3] un) = Z na,u, + Z n Z kyul%.

n  i+j=n

(26)

According to Hypothesis I, the coupling parameter
between both levels of organization (M) and (U) £; is
a function of the concentration P of the product which
is synthesized at level (M). These functions k; gener-
ally antisymmetrical, describe the self-organization
process between the two levels of organization (M)
and (U), for structural units whose functional degrees
of organization are 7 and j. Therefore, £; will be called
a self-organization parameter.

A mathematical study of systems (26) for r = 2 and
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Figure 11. Effect of the self-organization parameter k£ # k' =
k” on the selective value for a (u,up,u3)-Eigen system:
concentrations of units u;,us,u3 are represented versus time.
(a) k=£k =3, no selection of units; (6) k=5, k=1,
selection of units u,.

r = 3 shows the existence of two stable states for the
first system. For r = 2, the following Eigen system,
where u* is a constant (an initial condition in this
problem), is obtained:

duy/de = (o0 — [ )uy,
duy/dt = (B — f)ue + k(P)uyus,

U + 2uy = ¢, (27)
with the condition:

S () = (@fe)us + 2(BJe)s + 2(k/e) s, (28)
and for r = 3, an equation has to be added:

dug/dt = (y — f)us + Kwug + £ uguy. (29)

This expression shows that the dynamics of units u,,
ug,us depend on three coupling parameters, denoted by
k(P), K'(P), k”(P). A numerical simulation of these
systems with £ # k" = £”” leads to a large increase in
the population U, = {uy; upg = ((uy,u7), (45,41))}, and a
selection of up-species as a consequence thereof (figure

11).

(d) Stability of the 3-Level Goodwin-Eigen FBS

Two important properties for the stability of meta-
bolic units that are created by self-association have
now been proved (Machbub e/ al. 1992): (i) the
nonlinear system of self-associative units is always
stable (with their solutions remaining bounded),
because the domain of instability of the linearized

Phil. Trans. R. Soc. Lond. B (1993)

system corresponds to the domain of stability for the
nonlinear model with periodic solutions; (ii) the
admissible domain for the added supplementary para-
meter that results from an association of degree j is
larger than the one that corresponds to an association
of degree j — 1.

Clearly, the coupling of the three levels of func-
tional organization introduces parameters which have
a different meaning from that of Eigen’s selective
value, and it contributes strongly to the time variation
of the system. This result is a consequence of the
fundamental hypothesis of self-association. Because
the Eigen-Goodwin system studied here includes three
levels of organization, organic links like @ defined by
(11): Py = @(P,) at metabolical level (M), and an
implicit control link expressed by equation (23.2) at
the third level (U), it constitutes a good basis for the
mathematical study of functional self-organization
and theoretical related problems.

6. DISCUSSION AND CONCLUSION:
REAL BIOLOGICAL SYSTEMS?

(a) About the generality of the self-association
hypothesis: creation of functional interactions
during development

This paper is an attempt to give a formalized
description of biological functional organization that
is based on a hypothesis called the ‘self-association
hypothesis’. The consequences of this hypothesis are
analysed for a specific example, the Eigen-Goodwin
system, which is defined as a population of structural
units the behavior of which is (i) analogous to
macromolecular species, and (ii) ecological-like. Each
structural unit consists of a general metabolic system
with two coupled metabolic and epigenetic networks.
It is proved, at least for this particular case, that the
self-association hypothesis, applied to functional inter-
actions, is compatible with the nature of the biological
processes. Moreover, from this example, I have
found the same property for a general schema of two
coupled biochemical pathways (15) described by the
general dynamical system (16). Such a dynamical
system originates in the description of several biologi-
cal systems (Chauvet 1987), in molecular biology and
biochemistry, as well as for larger ones such as the
cardiovascular and respiratory systems. It will be
shown in paper III that the same results are valid for
structural units distributed in space. Partial derivative
equations can be derived from general equations (16)
with specific source terms I' that replace a;P;, and
non-local and local diffusion transport terms that
replace g;(P,Py). For example, in the nervous system,
the non-local transport is due to the connectivity
between neurons, and the local transport occurs in the
extracellular space.

Of course, we do not know yet if such a self-
association property is really general, but the problem
could be presented in another form: because this
property of an increase of stability with complexity is
observed in the living world, we can structure the
functional organization, i.e. determine how the levels
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of functional organization are built during develop-
ment, in order to obtain this property. I have chosen
the timescale of the dynamics as a parameter to
specify the levels, but the fundamental property of an
increase in stability has to be considered together with
that of self-association in order to define the functional
organization. In the specific example considered here,
the self-association is between two hierarchical sys-
tems, the normal metabolic pathway and the ‘patho-
logical’ one. The entire hierarchical system has three
levels of organization, the first level is the epigenetic
system which provides the specific enzyme that is
needed at each step of the metabolic pathway, i.e. the
biochemical reaction, and the second level is the
metabolic pathway in which the association is genera-
ted. The much larger timescale required for the
epigenetic system than for the metabolic pathway
justifies the existence of these two levels, and is the
cause of the increase in stability by association. The
hierarchy between timescales and the self-association
between the corresponding hierarchical systems can
be used to determine the unique functional organiza-
tion of the system.

(b) Comparison with compartmental systems:
(N,a) and ,p) representations

The existence of the functional interaction is due to
the fact that some localized substructure acts on
another. I have found that the hypothesis of self-
association leads to a structuring of the biological
system into levels of organization, and that the
domain of stability of the related dynamics is
increased. The elementary function represented by the
variable i satisfies dynamics in the representation
(¥,p) where the geometry is given by the density p of
structural units. The phenomena that can be des-
cribed with such a formalism are those which evolve
with a cerfain finite velocity between structural units.
Because chemical kinetic phenomena exhibit a strict
reaction-diffusion process, i.e. a thermodynamical
spread in space due to the statistical brownian motion,
it is clear that they cannot be incorporated in the
representation (¥,p).

Delattre (1971) developed an axiomatic theory ot
molecular transformations, including external effects
such as radiation, which was a generalization of
compartmental analysis. He showed that the evolution
of N; is given by:

dN}/dt = <Z a,g-FLj + ae_,-Fej> + (Z bij;k> + Eﬂl)j, (30)
k k

where N; is the number of elements in a class E, of
states Fy; the number of elementary transformations
per time unit from a class E; to a class £, and F,; the
number of elementary transformations per time unit
towards the environment. Generally:

F=KNSNSS .. N, (31)
When the transformation involves g; elements of £, . . .,
a4, elements of E;, ,, . . ., then Eny; describes inputs

(Env; > 0) or outputs (Eny; < 0) for elements of E.
Inputs and outputs are independent of the number of
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elements (say, the occupation number) of £. So N
represents the occupation number of the classes, and a
the rate constant of the transformations between
classes. Now, ¥ denotes an elementary function link
between two structural units which are equivalence
classes from a structural, i.e. anatomical or histological
point of view, and whose geometrical density is p.
Then, because ¥ and p could be deduced, but with
difficulty, from N and a, the (Y,p)- and (N,a)-
representations could be called ‘dual’ representations.

Methods of compartmental analysis (see, for exam-
ple, Jacquez (1985)), and more generally, formalisms
like transformation systems (Delattre 1971), and sta-
tistical mechanics (Demetrius 1983), are appropriate
when the number of elements is large enough to justify
statistical laws. This classical representation (N,a) is
currently used in ecology, epidemiology, biochemical
kinetics and population dynamics. However, at upper
levels of organization, such as those observed in
physiological systems, one way to study the process
based on functional interactions, will be to choose the
representation (,p).

(¢) From formal to real biological systems

Although the study of complex real biological
systems can be more easily deduced from related
formal biological systems, when moving from this
simple but useful FBs toward a real biological system
(rBs) as, for example, the respiratory system, many
complications appear in the description of its dyna-
mics. In fact, the preliminary identification of func-
tional interactions, elementary physiological functions,
and levels of organization, have to be accounted for in
building the global system. Because of the self-
association hypothesis, and because the concept of
level of functional organization corresponding to an
elementary physiological function has been defined as
the collective behaviour of a set of structural units, FBs
as well as RBs can be structured according to their
physiological functions. With this framework in mind,
a physiological function corresponds to the collective
behaviour of a hierarchical system. Therefore, a
physiological system will be described as a set of
parallel hierarchical subsystems, and corresponds to
the definition of a real biological system.

This method is useful in simulations, since it is
possible to establish a one-to-one correspondence
between each subsystem and one numerical processor.
The connections between subsystems are the control
or organic functional links as defined above. Thus, the
connectivity between parallel processors appears to be
a consequence of the parallel structure of biological
systems. One problem is to preserve the synchroniza-
tion between all subsystems.

Let us consider the respiratory function as an
example. At least seven physiological functions consti-
tute the respiratory function: (i) homeostatic function
(kidney); the structural units are the sets of nephrons,
and some parts of tubules for the homeostasis of H*
and other electrolytes; (ii) ventilatory function (lung);
structural units are muscles and bronchi; (iii) circula-
tory function (vessels and heart); structural units are
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Figure 12. Functional interactions for the respiratory system. f0), i=1,8 are control functional interactions; P,
P’ =hydrostatic pressure; ¢ =fluid flow; V'=ventilation; §=metabolic flow. Inputs: Molecules, Oy, COs. Output:

H*, H,0.
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Expiratory 5’
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Pleurum 7
Ventilatory mechanics: IT
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Haemoglobin 16

Chemo-receptors 20

Digestive system: V

Intestines 18

Mitochondria 19

Alveolii 9 All cells and receptors: VI
Heart: II1 All cells 17

Myocardium 10 Mechano-receptors 21
Vessels: IV Kidney: VII

Pulmonary vessels: Tubules 1

Capillaries 11
Veins 12
Arteries 13

Tubular cells 2
Membrane 3
Collecting tubule 4

Nervous control
Respiratory control
Neuronal pools 22
Pneumotaxic centres 23
Bulbus centres:
Inspiratory 24
Expiratory 24’
Hormonal control
Pancreatic cells 25
Thyroid cells 26
Post-hypophysis 27
Hypothalamus 28
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capillaries, arteries and veins and haemoglobin; (iv)
metabolical function: structural units are tissues,
muscles and digestive tracts; (v) sensory function:
structural units are mechano-receptors, chemo-recep-

Phil. Trans. R. Soc. Lond. B (1993)

tors; (vi) neuronal regulation function; structural units
are pools of neurons; (vii) hormonal regulation func-
tion: structural units are the endocrine glands, such as
hypophysis, thyroid, and pancreas. The functional
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Figure 13. (a) Ventilatory function represented (above) in representation (N,a), (below) in representation (¥,p); (b)
the same function represented as a hierarchical system connected with nervous and cardio-vascular functions
according to functional interactions. R.S.=respiratory System; m.f.=muscle fibres; E.S.=endocrine system;
N.S.=nervous system; A.N.S.=autonomic nervous system; f=frequency; A = pressure gradient.

interactions between the corresponding sub-systems
can be viewed as control links (noted 1 to 4 in figure
12) that are, from a physical point of view, modifica-
tions of the neural activity (defined as a frequency of
action potentials) and organic links.

Because of the complexity of the functional organi-
zation, transitive order relations between constitutive
functional interactions are often hidden. Thus, in the
same representation (¥,p) of the physiological func-

Phil. Trans. R. Soc. Lond. B (1993)

tions, at least for the upper levels of organization, and
according to the definitions given in § 4, a functional
order could appear. For example, in figure 12 the
respiratory function is drawn in terms of its functional
interactions. In the (N,a) representation, the COs
molecule (free in the alveoli or bound with haemoglo-
bina in capillaries) constitutes a compartment. In the
dual (N,a)-representation that includes the {-space, a
hierarchical system of structural units, whose collec-
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Figure 14. Hierarchical graph of the heart-vascular function with the heart shock sub-graph represented in bold arrows.
R.S. =respiratory system; m.f. = muscle fibers; E.S. = endocrine system; N.S. =nervous system; A.N.S. =autonomous

nervous system; f=frequency; AP = pressure gradient.

tive behaviour is a physiological function, corresponds
to bilateral exchanges between compartments (figure
134). By choosing a specific representation, actions
and substrates are not mixed. Figure 134 shows the
hierarchical graphs that are obtained for some physio-
logical systems of the organism. Because the graph is
generated from the set of functional interactions
following the self-association hypothesis, some particu-
lar properties of the graph could be elicited. This is so
with the graph which represents the cardio-vascular
function (figure 14). A cyclic subgraph can be identi-
fied, which corresponds to the heart shock: the cyclic
sequence of events can be decomposed into elementary
steps.

Based on the self-association hypothesis of func-
tional interactions, this approach leads to new results:
(1) hierarchical physiological systems are classified so
as to generate the functional organization of the whole
system (an example is given in figure 15); (ii)
structural and functional organizations are clearly
separated; (ill) particular cyclic subgraphs can be
identified; (iv) the consequence of a perturbation
inside a source at a given level of the functional
organization is thought of as the path that corresponds
to the modified dynamics; (iv) the functional map of
the combination of functional interactions can lead to
a better understanding of the system.

(d) Self-association as a principle of vital
coherence. Coupling between topology
and geometry

Results obtained for an Eigen—-Goodwin system lead

Phil. Trans. R. Soc. Lond. B (1993)

to some interesting conclusions and conjectures: (i)
when a new functional interaction is created as a
consequence of the self-association hypothesis, a new
functioning mode is obtained and an increase in
stability (considered as the area of stability in the
space of parameters) is found; (ii) a new functional
order is created in the population of structural units
following a selection of units that have increased their
degree of organization through association; (iii) there
exist self-organization parameters (k) that couple both
levels of functional organization, and modify the
selective value introduced by Eigen (1971).

Could these results be generalized to a class of
dynamical systems whose interpretation in terms of
biological functions is possible? If the answer is
positive, then there would exist a more general
principle that could constitute the basis of stable
functioning of formal biological systems. In this
abstract and formal approach, ‘something’ is con-
served during the ‘life’ of the system, and this property
of invariance is described by the self-association
hypothesis applied to the set of functional interactions.
Given its basic importance for the present theory, we
have called this invariance of the physiological func-
tion the ‘principle of vital coherence’. Applied to the
set of functional interactions, that principle describes
the fact that the system during development has to
reorganize the distribution of sources and sinks in
order to continue to live.

Specifically, the principle of vital coherence
included in this approach will be applied to two
different and complementary aspects of a biological
system. First, the topological aspect that describes the
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Figure 15. Representation of five physiological functions in terms of functional interactions. An illustration of the
relationships between the physiological functions previously described. The complexity is such that a computer is
required to reconstruct the corresponding hierarchical systems. The ‘balloons’ describe the various hierarchized
levels. d=diameter; @ =fluid flow; V= ventilation; RM =respiratory metabolites; GM =general metabolites (see

text for other symbols).

existence of the interactions, then the existence of the
elementary physiological function. The distribution
() =1, of functional links between structural units
has to be re-organized according to a new distribution
after perturbation of an element of the representative
graph (equation 5). The related system will be called
‘(0-FBS)’, the (ni)y—1, constitute the state
variables. Second, the dynamical aspect that describes

and

Phil. Trans. R. Soc. Lond. B (1993)

time evolution of the set of elementary functions ¥/ (f)
(equation 8), i.e. the intensity of the interaction. The
related system will be called ‘(p-FBs)’. Finally, the
biological system is composed of two systems describ-
ing respectively the topology and the dynamics, i.e.
the existence and the intensity of the functional
interactions. Therefore, the stability of the system
which is subjected to a perturbation results from the
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stability of the two subsystems (o-FBs) and (D-FBs).
Subsequently, the problem is to determine how could
the system stay o- and p-stable, while it grows and
reproduces by re-structuring both the levels of organi-
zation and the distribution of functional interactions?
The second and the third papers will focus on this
problem, namely the (o-FBs) and the (p-FBs) respec-
tively.

The author is very grateful to Professor J. D. Murray and
Dr R. Costalat for helpful discussions and revision of the
manuscript. This work has been supported by the Conseil
Général de Maine-et-Loire.
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